
Rockchip TEE SDK Developer Guide

ID：RK-KF-YF-851

Release Version: V1.10.0

Release Date: 2023-06-02

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2023. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n1676
http://www.rock-chips.com/
http://www.rock-chips.com/

Preface

Summary

This document mainly introduces Rockchip TEE firmware description, TEE environment construction, CA/TA
development test, TA debugging method, TA signature method and precautions.

Readers

This document is mainly applicable to the following engineers:

Technical Support Engineer
Software Development Engineer

History

Date Revision Author Description

2018-4-
26

V1.00 ZZJ Initial Version

2019-3-
18

V1.10 ZZJ
Add description of TEE in U-Boot；Distinguishing between V1

and V2 versions

2019-6-
4

V1.20 hisping Add description of secure storage

2019-7-
4

V1.30 hisping Modify description of secure storage

2019-7-
11

V1.40 hisping
Add description of parameter.txt；Add description of kernel node

which relate to TEE

2019-8-
8

V1.50 hisping Add description of error when compile rk_tee_user

2021-1-
27

V1.60 hisping Add description of changes to optee v1 kernel driver

2021-3-
4

V1.61 hisping Add description of unsupported error for rkfs

2021-5-
13

V1.70 hisping Add description of SECSTOR TA

2021-5-
14

V1.71 WXB
Upgrade the CA/TA test program developed by RK, Update the

description of the document

2021-6-
4

V1.72 hisping Modify description of TEE Macro in U-Boot

2021-6-
4

V1.73 hisping Add description of ENCRYPT TA

2021-6-
17

V1.74 WXB Add description of anti rollback for REE FS TA

2021-7-
5

V1.75 hisping Add description of TA debug method

2021-7-
8

V1.76 hisping Add description of TA view function call stack method

2021-9-
3

V1.77 hisping Revise TA signature chapter

2021-9-
6

V1.78 hisping Add description of secure storage performance test

2021-9-
10

V1.79 ZZJ Optimize partial format

2021-9-
10

V1.80 WXB Add description of TA API

Date Revision Author Description

2021-
10-12

V1.81 hisping Modify description of secure storage performance test

2021-
10-15

V1.82 WXB Add more API in TA API section

2021-
10-18

V1.83 ZZJ Optimize partial format

2021-
11-22

V1.84 WXB
Add description of strong and weak security level ，Update

CA/TA description

2021-
11-26

V1.85 WXB
Add OTP description chapter，Update OTP API, Adjust CA/TA

description

2021-
11-30

V1.86 WXB Add reading guide chapter

2022-
06-22

V1.87 hisping Add rk_tee_service chapter

2023-
05-29

V1.9.0 hisping
Supplement the details of each chapter, Add Step By Step chapter,

Update Memory description, Update Secure Storage, Update OTP

description.

2023-
06-02

V1.10.0 ZZJ Optimize partial format

Rockchip TEE SDK Developer Guide
1. Reading Guide
2. Introduction to TrustZone

2.1 What is TrustZone
2.2 Architecture

2.2.1 Hardware architecture
2.2.2 Software architecture
2.2.3 TrustZone and TEE

3. TEE Environment
3.1 OP-TEE Version Description
3.2 Parameter.txt
3.3 TEE firmware
3.4 TEE driver in U-Boot

3.4.1 Macro Definition
3.4.2 Shared Memory
3.4.3 Secure Storage Test

3.4.3.1 Test method
3.4.3.2 Troubleshooting

3.5 TEE driver in kernel
3.5.1 OP-TEE V1
3.5.2 OP-TEE V2
3.5.3 Confirm TEE drive is enabled

3.6 TEE Library
4. CA/TA Development And Test

4.1 Environment
4.2 CA/TA demo
4.3 Android

4.3.1 Directory Introduction
4.3.2 Compile
4.3.3 Run
4.3.4 Step By Step
4.3.5 Develop CA/TA

4.4 Linux
4.4.1 Directory Introduction
4.4.2 Compile
4.4.3 Run
4.4.4 Step By Step
4.4.5 Develop CA/TA

4.5 rk_tee_service
4.5.1 Introduction
4.5.2 Component
4.5.3 Demo

5. TA Signature
5.1 Principle
5.2 Replace the public key

6. Built-in TA into secure storage
6.1 Principle
6.2 Reference implementation

7. Encrypt TA
7.1 Method of encrypting TA
7.2 Burn TA encryption key
7.3 Decrypt and run the TA

8. REE FS TA anti-rollback
8.1 TA anti-rollback usage

9. TA debugging methods
9.1 OP-TEE v1 platforms
9.2 OP-TEE v2 platforms

9.3 Call stack
10. Memory description

10.1 OP-TEE V1
10.2 OP-TEE V2

11. Secure Storage
11.1 Partition
11.2 Performance testing

12. Solution of optional strong or weak security levels
12.1 Scope
12.2 Notes
12.3 Solution description

13. OTP description
14. TA API description

14.1 Overview
14.2 API return value
14.3 API description

14.3.1 Crypto API
14.3.1.1 rk_crypto_malloc_ctx
14.3.1.2 rk_crypto_free_ctx
14.3.1.3 rk_hash_crypto
14.3.1.4 rk_hash_begin
14.3.1.5 rk_hash_update
14.3.1.6 rk_hash_finish
14.3.1.7 rk_cipher_crypto
14.3.1.8 rk_set_padding
14.3.1.9 rk_cipher_begin
14.3.1.10 rk_cipher_update
14.3.1.11 rk_cipher_finish
14.3.1.12 rk_ae_begin
14.3.1.13 rk_ae_update
14.3.1.14 rk_ae_finish
14.3.1.15 rk_gen_rsa_key
14.3.1.16 rk_rsa_crypto
14.3.1.17 rk_rsa_sign
14.3.1.18 rk_set_sign_mode
14.3.1.19 rk_rsa_begin
14.3.1.20 rk_rsa_finish
14.3.1.21 rk_gen_ec_key
14.3.1.22 rk_ecdh_genkey
14.3.1.23 rk_ecdsa_sign
14.3.1.24 rk_ecdsa_begin
14.3.1.25 rk_ecdsa_finish
14.3.1.26 rk_sm2_pke
14.3.1.27 rk_sm2_dsa_sm3
14.3.1.28 rk_sm2_kep_genkey
14.3.1.29 rk_mac_crypto
14.3.1.30 rk_mac_begin
14.3.1.31 rk_mac_update
14.3.1.32 rk_mac_finish
14.3.1.33 rk_hkdf_genkey
14.3.1.34 rk_pkcs5_pbkdf2_hmac

14.3.2 TRNG API
14.3.2.1 rk_get_trng

14.3.3 OTP API
14.3.3.1 rk_otp_size
14.3.3.2 rk_otp_read
14.3.3.3 rk_otp_write

15. Reference

1. Reading Guide

The following steps describes the document structure and how to use TEE on Rockchip SoCs. It can be used as a
guide for developers.

1. Understand the basics of TEE, See Introduction to TrustZone section.

2. Confirm requirements and config functions

Confirm OP-TEE version, See OP-TEE Version Description section.
Strong and weak security level configuration, See Solution of optional strong or weak security levels
section.
TA signature key, See TA Signature section.
Additional protection mechanism of TA, See Built-in TA into secure storage、Encrypt TA、REE FS
TA anti-rollback sections.
Secure storage and performance test, See secure storage section.
OTP description, See OTP description section.

3. TEE environment

Configure secure storage file system, See OTP description and Parameter.txt section.
Enable TEE firmware, See TEE firmware section.
Enable TEE for U-Boot, See TEE driver in U-Boot section.
Enable TEE for kernel, See TEE driver in kernel section.

4. Test CA/TA

Confirm the environment and project directory, See TEE library、Environment、Android、Linux
sections.
Understand the demo provided by RK and compile it, See CA/TA demo、Android、Linux sections.
Install library and CA TA demo, See Android、Linux sections.
Test demo, See Android、Linux sections.

5. Develop CA/TA

Understand TA debugging methods, See TA debugging methods section.
Refer to demo and TA API to develop CA/TA, See CA/TA demo、TA API description sections.

af://n1850

2. Introduction to TrustZone

2.1 What is TrustZone

ARM TrustZone technology is a system wide security method for a large number of applications on high-
performance computing platforms, including secure payment, digital rights management (DRM), enterprise
services and web-based services.

TrustZone Technology and Cortex ™- A Processor is tightly integrated and expanded in the system through
AMBA-AXI bus and specific TrustZone system IP block. This system approach means that peripherals such as
secure memory, encryption blocks, keyboards, and screens can be protected from software attacks.

The devices developed according to the recommendations of the TrustZone Ready Program and utilizing the
TrustZone technology provide a platform that can support a fully trusted execution environment (TEE) as well as
security aware applications and security services.

The latest devices such as smart phones and tablets provide consumers with a high-value experience based on an
extended service set. Mobile devices have developed into an open software platform that can download various
large-scale applications from the Internet. These applications are usually verified by the device OEM to ensure
quality, but not all functions can be tested, and attackers are constantly creating more and more malicious code
targeting such devices.

At the same time, the demand for mobile devices to handle important services is increasing. From being able to
pay, download and watch the latest Hollywood blockbusters in a specific period of time to being able to pay bills
and manage bank accounts remotely through mobile phones, all these indicate that new business models have
begun to emerge.

These development trends have made mobile phones likely to become the next software attack target of malware,
Trojan horses, rootkits and other viruses. However, by applying advanced security technology based on ARM
TrustZone technology and integrating SecurCore ™ Anti tamper elements can be used to develop devices that
can provide an open operating environment with rich functions and powerful security solutions.

The trusted application adopts the SoC (running trusted execution environment) based on TrustZone technology,
which is separated from the main OS to prevent software/malware attacks. TrustZone can be switched to safe
mode to provide isolation supported by hardware. Trusted applications are usually containable, such as allowing
trusted applications from different payment companies to coexist on one device. The processor supports ARM
TrustZone technology, which is the basic function of all Cortex - A processors, and is introduced through the
security extension of ARM architecture. These extensions provide a consistent programmer model across
vendors, platforms, and applications, while providing a real hardware supported security environment.

2.2 Architecture

2.2.1 Hardware architecture

The TrustZone hardware architecture is designed to provide a security framework that enables devices to
withstand the many specific threats they will encounter. TrustZone technology provides an infrastructure that
allows SoC designers to choose from a large number of components that can implement specific functions in a
secure environment, without providing a fixed and unchanging security solution.

af://n4074
af://n1900
af://n1908
af://n1909

The main security goal of the architecture is to support the construction of a programmable environment to
prevent specific attacks on the confidentiality and integrity of assets. Platforms with these features can be used to
build a wide range of security solutions, which are time-consuming and laborious to build using traditional
methods.

System security can be ensured by isolating all SoC hardware and software resources so that they are located in
two areas (a secure area for security subsystems and a normal area for storing all other content). AMBA3 AXI
supporting TrustZone ™ , The hardware logic in the bus construction can ensure that normal area components
cannot access security area resources, thus building a strong boundary between the two areas. The design of
placing sensitive resources in a secure area, as well as running software reliably in a secure processor core,
ensures that assets can withstand numerous potential attacks, including those that are often difficult to protect (for
example, entering passwords using a keyboard or touch screen). By isolating security sensitive peripherals in the
hardware, designers can limit the number of subsystems that need to pass the security assessment, thus saving
costs when submitting security certification equipment.

The second aspect of the TrustZone hardware architecture is the extension implemented in some ARM processor
cores. With these additional extensions, a single physical processor core can safely and effectively execute code
from both the normal area and the security area in a time slice manner. In this way, a dedicated security processor
core is not required, which saves chip area and energy, and allows high-performance security software to run
together with the general regional operating environment.

After changing the currently running virtual processor, the two virtual processors perform context switching
through the new processor mode (called monitor mode).

The mechanisms used by the physical processor to enter the monitor mode from the normal area are closely
controlled, and these mechanisms are always regarded as exceptions of the monitor mode software. The items to
be monitored can be triggered by the software executing special instructions (security monitor call (SMC)
instructions), or by a subset of the hardware exception mechanism. IRQ, FIQ, external data abort, and external
prefetch abort exceptions can be configured to switch the processor to monitor mode.

The software executed in the monitor mode is implementation defined, but it usually saves the state of the current
area and restores the state of the area location to which it will switch. It then performs the operation returned
from the exception to restart the processing in the restored area. The last aspect of the TrustZone hardware
architecture is the security aware debugging infrastructure, which can control the access to security zone
debugging without weakening the debugging visualization of common zones.

2.2.2 Software architecture

Implementing security zones in SoC hardware requires that certain security software be run in them and that
sensitive assets stored in them be utilized.

There may be many software architectures that can be implemented by the security zone software stack on the
processor core that supports TrustZone. The most advanced software architecture is the dedicated security zone
operating system; The simplest is the synchronized code base placed in the security zone. There are many
intermediate options between these two extreme architectures.

A dedicated security kernel can be a complex but powerful design. It can simulate the concurrent execution of
multiple independent security zone applications, the runtime download of new security applications, and security
zone tasks that are completely independent of the general zone environment.

These designs are very similar to the software stack you will see in the SoC, which uses two separate physical
processors in an asymmetric multiprocessing (AMP) configuration. The software running on each virtual
processor is an independent operating system, and each region uses hardware interrupts to preempt the currently
running region and obtain processor time.

A tightly integrated design using communication protocols that associate secure area tasks with normal area
threats that request them can provide many advantages of symmetric multiprocessing (SMP) designs. For
example, in these designs, a security zone application can inherit the priority of common zone tasks it supports.
This will result in some form of soft real-time response to the media application.

Security extension is an open component of ARM architecture, so any developer can create a customized security
zone software environment to meet its requirements.

2.2.3 TrustZone and TEE

Applications such as payment, online banking, content protection, and enterprise authentication can improve their
integrity, functionality, and user experience by leveraging three key elements provided by TrustZone technology
enhanced devices:

1. Software secure execution environment to prevent malware attacks from rich operating systems

af://n1918
af://n1926

2. The hardware trust root can check the integrity of data and applications in the rich operation field to ensure
that the security environment is not damaged

3. Access security peripherals on demand, such as memory, keyboard/touch screen, and even monitor

The device based on ARM TrustZone technology is combined with open APIs to provide a trusted execution
environment (TEE). Developers need a new type of software to achieve its functions and consistency: this
software is a trusted application. A typical trusted application can contain part of the code in both the normal area
and the security area, for example, handling critical storage and manipulation. TEE also provides isolation from
other trusted applications, enabling multiple trusted services to coexist.

The standardization of TEE API (managed by GlobalPlatform) will enable service providers, operators and
OEMs to market interoperable trusted applications and services.

ARM TrustZone technology does not require separate security hardware to verify the integrity of devices or
users. It does this by providing a true hardware trust root in the main handset chipset.

In order to ensure the integrity of the application, TrustZone also provides a secure execution environment (i.e.,
trust execution environment (TEE)), in which only trusted applications can run, so as to prevent attacks in the
form of hackers/viruses/malware.

The TrustZone hardware provides isolation between TEE and software attack media. Hardware isolation can be
extended to protect data input and output from physical peripherals (including keyboard/touch screen, etc.).

With these key functions, the chipset using TrustZone technology provides many opportunities to redefine the
services that users can access (more and better services), how to access services (faster and easier), and where to
access services (anytime, anywhere).

On most Android devices, the Android Boot loader does not verify the authenticity of the device kernel. Users
who want to further control their devices may install the cracked Android kernel to root their devices. The
cracked kernel allows super users to access all data files, applications and resources. Once the kernel is broken,
the service will be rejected. If the kernel contains malware, the security of enterprise data will be compromised.

Secure Boot can effectively prevent the above problems. Secure Boot is a security mechanism that can prevent
unauthorized boot loaders and kernels from being loaded during startup. Firmware images (such as operating
systems and system components) that are encrypted and signed by a trusted, known authority are considered
authorized firmware. The security boot component can form the first line of defense to prevent malicious
software from attacking the device.

3. TEE Environment

3.1 OP-TEE Version Description

Android 7.1 and higher SDKs in Rockchip platform support TEE environment by default，TEE environment is
not supported by default in versions earlier than Android 7.1

Linux SDK does not enable TEE environment by default, But you can refer to the following chapters to manually
configure the TEE environment.

The TEE solution on Rockchip platform is OP-TEE, and the TEE API conforms to the GlobalPlatform standard.

At present, there are two versions of OP-TEE running on the rockchip platform, OP-TEE V1 and OP-TEE V2.

1.OP-TEE V1：RK312x、RK322x、RK3288、RK3328、RK322xh、RK3368、RK3399、RK3399Pro

af://n1943
af://n1944

2.OP-TEE V2：RK3326/PX30、RK3358、RK3308、RK1808、RV1109/RV1126、RK3566/RK3568、
RK3588、RK3528、RK3562、RV1106 and subsequent new platforms

TEE library files, TA files, and Secure OS firmware is different between the two versions， Select TEE
components according to the specific platform.

Platforms that are not listed in the OP-TEE V1 list can be considered platforms that adopt OP-TEE V2.

3.2 Parameter.txt

The Parameter.txt file records the location and size of each image and partition，Rockchip's OP-TEE currently
supports both security partition and rpmb secure storage file systems，The specific file system used is
determined by setting the storageID parameter in TA code，TA cannot use security partition secure storage if
security partition is not defined in parameter.txt，security partition can be set by adding
0x00002000@0x000xxxxx(security) in parameter.txt，0x00002000 indicates the size of 4M, 0x000xxxxx
indicates the starting address，modify according to the actual parameter.txt

3.3 TEE firmware

The source code of TEE Secure OS is not open source by default，binary file locat in directory u-

boot/tools/rk_tools/bin or rkbin/bin .

1. The TEE binary of ARMv7 platform is packaged into trust.img by the tool u-

boot/tools/loaderimage，The name of TEE binary is as follows：

The name with [ta] support running user TA application, the name without [ta] do not support running user
TA application.

2. The TEE binary of ARMv8 platform is packaged into trust.img by the tool u-

boot/tools/trust_merger，The name of TEE binary is as follows：

3. If [BL32_OPTION] SEC=0 in rkbin/RKTRUST/.ini，It needs to be changed to SEC=1，Otherwise
trust.img will not contain Secure OS and cannot run TEE services.

4. RK3566/RK3568, RK3588, RK3528, RK3562, RV1106, and subsequent new platforms will package the
TEE binary into uboot.img without generating trust.img firmware.

3.4 TEE driver in U-Boot

At present, some safe operations need to be performed at the U-Boot level，For example, OP-TEE must be used
to read some secure data.The OP-TEE Client code is implemented in U-Boot，U-Boot can communicate with
OP-TEE through this interface. OP-TEE Client driver is under lib/optee_client，API conforms to GP
specification. At present, developers are not supported to develop their own CA/TA applications in U-Boot.

<platform>_tee_[ta]_<version>.bin

<platform>_bl32_<version>.bin

af://n1953
af://n1955
af://n1969

3.4.1 Macro Definition

CONFIG_OPTEE_CLIENT，OP-TEE function main config.

CONFIG_OPTEE_V1，set by OP-TEE V1 platform.

CONFIG_OPTEE_V2，set by OP-TEE V2 platform.

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION， The secure storage area will be selected according to
the hardware if this macro is not enabled，use rpmb if device use EMMC，use security partition if device use
NAND. After the macro is enabled, data is fixed store in the security partition，Not store in rpmb . RPMB has
higher security and stability than security partition, but less convenience than security partition. If the device is
replaced with another device's EMMC to this device, or if the CPU is replaced, all you need to do is use the
burning tool to erase the flash and reburn the firmware when using security partitions, the burning tool cannot
clear rpmb data and special firmware is needed to clear rpmb data when using rpmb. Please weigh the
convenience and security of whether to enable this macro. Some platforms will default to enabling this macro, If
you have high security requirements, you can remove this macro yourself.

3.4.2 Shared Memory

When U-Boot communicates with OP-TEE, the data must be stored in shared memory，You can use the
TEEC_AllocateSharedMemory() to request shared memory，the shared memory size of each platform is
different, and it is recommended that it should not exceed 1M，If it exceeds, it is recommended to split the data
and transfer it for many times，Release shared memory by call TEEC_ReleaseSharedMemory() .

3.4.3 Secure Storage Test

3.4.3.1 Test method

Follow the steps below to perform the secure storage test. This test case will test the read/write function of secure
storage，The test case will automatically check the hardware，the rpmb and security partition will be tested
when the hardware uses emmc，Only security partition will be tested when the hardware uses nand. It is
necessary to confirm that the U-Boot has turned on CONFIG_SUPPORT_EMMC_RPMB when the hardware
uses emmc.

1. Enter the U-Boot command line：Device serial port connecting to PC，press ctrl+c in PC，Start device，
It will stop at uboot.

2. Run：The following command starts the test.

3.4.3.2 Troubleshooting

The emmc or nand device is not found. Please check the driver in the U-Boot or the hardware.

=> mmc testsecurestorage

"TEEC: Could not find device"

"TEEC: Could not find security partition"

af://n1971
af://n1976
af://n1978
af://n1979
af://n1987

When the security partition is used for secure storage, the encrypted data will be stored in this partition. Please
check whether the security partition is defined in parameter.txt

When the security partition is used for secure storage for the first time, or the security partition data is illegally
tampered, the security partition will be completely cleared.

There is not enough storage.

During U-Boot startup, key data will be stored by calling TEE，Key data is encrypted by TEE and stored in
security partition or rpmb，And the encryption key is bound to the CPU；If the CPU is replaced, key data
cannot be decrypted normally, resulting in U-Boot startup failure；If the emmc is replaced and used before，Old
data exists in the security partition or rpmb，This error will also occur which causing U-Boot start fail；The
solution is to clear the old data in the security partition or rpmb，format emmc directly if the security partition is
used，If you use rpmb, you need to contact technical support to provide special firmware to clear the old data in
rpmb.

The U-Boot version does not match the TEE version, the U-Boot version is higher than the TEE version，The
solution is as follows（choose one）：

1. Fallback U-Boot version to cf13b78438 (tag: android-10.0-mid-rkr9) rockchip: spl: add

rollback index check with otp .

2. Revert the following commit:

396e3049bd rochchip: board: only map op-tee share memory as dcache enabled

7a349fdcbd lib: optee_client: add optee initialize flag

74eb602743 lib: optee_client: update to new optee msg for optee v1 platform

102dfafc4a rochchip: board: map op-tee memory as dcache enabled

Normally, the versions of Uboot and OP-TEE in released SDK are matched.

If it is printed in the U-Boot startup, It mean the U-Boot version does not match the TEE version，U-Boot
version is lower than TEE version，Upgradeable U-Boot version to 396e3049bd (tag: android-10.0-mid-

rkr11, tag: android-10.0-mid-rkr10) rochchip: board: only map op-tee share memory as

dcache enabled at least.

If it is printed at the startup stage of Android system，Then upgrade android/vendor/rockchip/common
version to 8bc7bf97 (tag: android-10.0-mid-rkr10) vpu: librockit: add Rockit

MetadataRetriever at least.

If printing in the startup phase of the Linux system，Then upgrade linux/external/security/bin version
to f59085c optee_v1: lib: arm&arm64: update binary and library at least.

"TEEC: verify [%d] fail, cleanning"

"TEEC: Not enough space available in secure storage !"

INF [0x0] TEE-CORE:storage_read_obj:201: Warning! head data not find!

ERR [0x0] TEE-CORE:storage_read_obj:210: cpu or emmc was replaced!

“optee check api revision fail”

"optee api revision mismatch with u-boot/kernel, panic"

Normally, the versions of Uboot and OP-TEE in released SDK are matched.

3.5 TEE driver in kernel

TEE kernel driver under security/optee_linuxdriver/ or drivers/tee/

3.5.1 OP-TEE V1

The driver of the chips using OP-TEE V1 is located at security/optee_linuxdriver/，All are enabled by
default. The method to enable is as follows:

Add the following configurations in config:

At present, we will gradually abandon the TEE kernel driver of OP-TEE V1，OP-TEE V1 platform will use the
TEE kernel driver of OP-TEE V2.

If version>=v2.00 in the TEE binary file name in the rkbin/bin directory, you also need to enable the TEE kernel
driver of OP-TEE V2.

Android 10 and above and Linux released after August 2020 use the TEE kernel driver of OP-TEE V2 by default.

3.5.2 OP-TEE V2

The driver of the chips using OP-TEE V2 is located at drivers/tee/，the method to enable is as follows:

Confirm that the following nodes have been added to the platform dtsi file:

This node is added to all platforms by default，However, some platforms will set status = "disabled"，Just
remove status = "disabled" if you want to enable the optee driver.

Add the following two configurations in config:

CONFIG_TEE_SUPPORT=y

firmware {

 optee: optee {

 compatible = "linaro,optee-tz";

 method = "smc";

 #status = "disabled";

 };

 };

CONFIG_TEE=y

CONFIG_OPTEE=y

af://n2015
af://n2017
af://n2024

3.5.3 Confirm TEE drive is enabled

If the /dev/opteearmtz00 node appears，it indicates that the TEE kernel driver of optee v1 is enabled.

If the /dev/tee0 and /dev/teepriv0 node appears，it indicates that the TEE kernel driver of optee v2 is
enabled.

3.6 TEE Library

Android

TEE environment components are in the Android project directory vendor/rockchip/common/security or
hardware/rockchip/optee（Including OP-TEE V1 and OP-TEE V2）：

1. lib：Includes tee-supplicant、libteec.so and keymaster/gatekeeper library compiled from 32bit and 64bit
platforms.

2. ta：Store the compiled keymaster/gatekeeper TA file.

Linux

TEE environment components are in the Linux project directory external/security/bin（Including OP-
TEE V1 and OP-TEE V2）：

1. lib：Includes tee-supplicant、libteec.so and other librarys compiled from 32bit and 64bit platforms.
2. ta：Store the compiled TA file.

4. CA/TA Development And Test

4.1 Environment

1. If the compilation reports an error: No module named Crypto.Signature，The reason is Python
algorithm library is not installed on the development computer，Execute the following command:

2. If the compilation reports an error： ModuleNotFoundError: No module named 'Cryptodome'

Please install python package on the development computer： pip3 install [--user]

pycryptodomex

4.2 CA/TA demo

RK provides a series of CA/TA demo，The purpose is to:

Provide reference for developers
Directly used to test TEE environment

pip uninstall Crypto

pip uninstall pycrypto

pip install pycrypto

af://n2030
af://n2032
af://n2051
af://n2052
af://n2059

The source code of CA/TA demo is in the Android project external/rk_tee_user，Or Linux project
external/security/rk_tee_user .

CA/TA demo contains “rktest” and “xtest”，“xtest” is only available in Android project
external/rk_tee_user/v2，"xtest" is the open-source test code of OPTEE，Including more complete test
items. Generally, if it is used to test TEE environment or reference development, "rktest" can basically meet.

The following describes the functions of rktest.

The CA name of the rktest demo is "rktest"，TA named “1db57234-dacd-462d-9bb1ae79de44e2a5.ta” or
“1db57234-dacd-462d-9bb1-ae79de44e2a5.ta”.When running the CA program, you need to enter parameters to
select the corresponding functions. Enter CA program name+space+any character，The available parameters will
be prompted. The test functions implemented by rktest are shown in the following table.

 Note: The test program only involves some commonly used functions and does not cover all functions supported
by OPTEE.

parameters function notes

transfer_data

Test the
parameter
transfer
between CA
and TA

storage
Test the secure
storage

Before testing the Secure Storage function, ensure that the corresponding node
of the kernel exists，security partition need /dev/block/by-

name/security；rpmb secure storage
need /dev/block/mmcblk%u， /dev/block/mmcblk%urpmb，

/sys/class/mmc_host/mmc%u/mmc%u:0001/cid，%u value is any one
of 0, 1 and 2；If the node does not exist, please link to the corresponding node.

storage_speed
Test the secure
storage speed

property
Test get
property

crypto_sha
Test SHA
algorithm

crypto_aes
Test AES
algorithm

crypto_rsa

Test RSA
encryption and
decryption,
signature
verification

secstor_ta
Test Built-in
TA into secure
storage

otp_read
Test read
OEM_S_OTP

The test program hides the otp test item by default，modify
/host/rk_test/main.c if you want enable it. OTP characteristics are shown below
“OTP Description” chapter.

otp_write
Test write
OEM_S_OTP

otp_size
Get
OEM_S_OTP
size

otp_ns_read
Test read
OEM_NS_OTP

otp_ns_write
Test write
OEM_NS_OTP

trng Get trng data

socket

Test socket
communication
between CA
and TA

Execute the test program. The command is as follows:

The successful execution of CA program prompts PASS, and the failure prompts Fail.

4.3 Android

4.3.1 Directory Introduction

TEE CA/TA development environment locate in Android project directory external/rk_tee_user：

1. Android.mk：Decide the compilation tool and the CA file to be compiled.
2. host：CA source files.
3. ta：TA source files.
4. export*：The environment which TA compilation depends on.

4.3.2 Compile

If there are only v1/ v2/ directories under external/rk_tee_user，It indicates that the master branch has
been merged into the develop-next branch，The master branch will be discarded，Merge point is master
branch 492f1cbf testapp: support new OP-TEE MSG，Execute the following command to start
compiling.

If there are no v1/ v2/ directories under external/rk_tee_user，It indicates that two branches are still
used，please switch to the master branch for OP-TEE V1 platform，please switch to the develop-next branch for
OP-TEE V2 platform，Execute the following command to start compiling.

The execution program will be obtained after successful compilation，The execution program contains CA
（Client Application，run on normal world）and TA（Trust Application，run on secure world）.

CA is a Android execution file, which is generated in the Android project out directory after compilation.
TA is a file with the file name uuid.ta，Generated in one of the directories rk_tee_user/ta、
rk_tee_user/out/ta、rk_tee_user/v1/out/ta、rk_tee_user/v2/out/ta.

rktest transfer_data

rktest [command]

#For OP-TEE V1 platform

cd external/rk_tee_user/v1

#For OP-TEE V2 platform

cd external/rk_tee_user/v2

rm -rf out/

./build.sh ta

mm

cd external/rk_tee_user/

rm -rf out/

./build.sh ta (run if git log contain “Android.mk: remove build ta from android”,

otherwise, do not need execute)

mm

af://n2139
af://n2140
af://n2151

4.3.3 Run

1. Enter the device by using adb shell

2. Install TEE library files, CA and TA into the device. For Android 7：push libteec.so into /system/lib
or /system/lib64；push tee-supplicant and CA into /system/bin；
create /system/lib/optee_armtz directory，push TA into /system/lib/optee_armtz`.

For Android 8 and later: push libteec.so into /vendor/lib or /vendor/lib64；push tee-supplicant
and CA into /vendor/bin；create /vendor/lib/optee_armtz directory，push TA into
/vendor/lib/optee_armtz`.

（If tee-supplicant starts automatically after startup, tee-supplicant and libteec.so do not need to push any
more. These two files already exist in the system；libteec.so and tee-supplicant should distinguish OP-TEE
V1 from OP-TEE V2，Distinguish between 32-bit and 64-bit；

After push, check whether the tee-supplicant and CA programs have execution permissions. ）

3. If the tee-supplicant is not automatically run when the machine is turned on, you need to manually run tee-
supplicant in the background with root permission:

If print tee_supp_rk_fs_init: unsupported，It means security partition is not defined in
parameter.txt，Please refer to Section 2.2 for details，If the developer only uses the rpmb or REE file
system for secure storage, the error print can be ignored.

4. run CA/TA，test TEE functions. rktest can be used to directly test the basic functions of TEE，execute：

5. If rktest run successfully，Then TEE environment is normal，TEE development is available.

please check the drive and components if error occurs.

It may also be caused by the mismatch between the rk_tee_user version and the TEE OS version，The
following are common matching relationships:

OP-TEE V1:

version >= v2.00 of TEE binary name under rkbin/bin directory，

match 492f1cbf testapp: support new OP-TEE MSG

 version < v2.00 of TEE binary name under rkbin/bin directory，

match e8d7215d Android.mk: support build in android R

or match 466515ec add tools for user to resign TA

OP-TEE V2:

Serial port printing "OP-TEE version: 3.13.0" during TEE startup， a566557 - v2: update to

keep up with v3.13.0 of optee_test

Serial port printing "OP-TEE version: 3.6.0" during TEE startup， 1aa969e2 Android.mk:

support build in android R

Serial port printing "OP-TEE version: 3.3.0" during TEE startup， aa0a0c00 Android.mk:

remove build ta from android

Serial port printing "OP-TEE version: 2.5.0" during TEE startup， 1ec9913a add tools for

user to resign TA

tee-supplicant &

rktest [command]

af://n2162

4.3.4 Step By Step

Here is an example of the arm64 platform using OP-TEE V2 on Android 12

4.3.5 Develop CA/TA

Refer to Makefile about CA TA, the UUID of the header file needs to be modified to a new UUID，It can be
generated with the uuidgen command.

head and stack size are defined in user_ta_header_defines.h under include directory，head szie is 32KB
（TA_DATA_SIZE），stack size is 2KB（TA_STACK_SIZE）. Generally, it is better not to modify it. If it
cannot meet the needs, it can be appropriately enlarged，The heap size should not exceed 1MB, and the stack
size should not exceed 64KB.

4.4 Linux

4.4.1 Directory Introduction

TEE CA/TA development environment locate in Linux project directory
external/security/rk_tee_user：

1. build.sh：Compile script, please refer to the notes in the script for compilation instructions.
2. Makefile：Decide the compilation tool and the CA file to be compiled.
3. host：CA source files.

//Compile CA TA

cd /home1/xxxx/rk_android_12

source build/envsetup.sh

lunch rk3568_s-userdebug

cd /home1/xxxx/rk_android_12/external/rk_tee_user/v2

./build.sh ta

mm

//Push TEE library files and CA TA to devices

adb root && adb remount

adb push Y:\rk_android_12\hardware\rockchip\optee\v2\arm64\libteec.so

/vendor/lib64

adb push Y:\rk_android_12\hardware\rockchip\optee\v2\arm64\tee-supplicant

/vendor/bin

adb push Y:\rk_android_12\out\target\product\rk3568_s\vendor\bin\rktest

/vendor/bin

adb push Y:\rk_android_12\external\rk_tee_user\v2\out\ta\rk_test\1db57234-dacd-

462d-9bb1-ae79de44e2a5.ta /vendor/lib/optee_armtz

//Run CA TA

tee-supplicant & //This step can be ignored if tee-supplicant is already

running, Android platform is running by default.

rktest transfer_data

#define TA_STACK_SIZE (2 * 1024)

#define TA_DATA_SIZE (32 * 1024)

af://n2196
af://n2199
af://n2203
af://n2204

4. ta：TA source files.
5. export*：The environment which TA compilation depends on.

4.4.2 Compile

If there are only v1/ v2/ directories under external/security/rk_tee_user，It indicates that the master
branch has been merged into the develop-next branch，The master branch will be discarded，Merge point is
master branch 492f1cbf testapp: support new OP-TEE MSG，Execute the following command to start
compiling.

If there are no v1/ v2/ directories under external/security/rk_tee_user，It indicates that two branches
are still used，please switch to the master branch for OP-TEE V1 platform，please switch to the develop-next
branch for OP-TEE V2 platform，Execute the following command to start compiling.

The execution program will be obtained after successful compilation，The execution program contains CA
（Client Application，run on normal world）and TA（Trust Application，run on secure world）.

CA is a Linux execution file, which is generated in one of the directories rk_tee_user/out、
rk_tee_user/v1/out、rk_tee_user/v2/out.
TA is a file with the file name uuid.ta，Generated in one of the directories rk_tee_user/ta、
rk_tee_user/out/ta、rk_tee_user/v1/out/ta、rk_tee_user/v2/out/ta.

4.4.3 Run

1. Enter the device by using adb shell.

2. Install TEE library files, CA and TA into the device. push libteec.so* into /lib or /lib64；push tee-
supplicant and CA into /usr/bin；create /lib/optee_armtz directory，push TA into /lib/optee_armtz.

（If tee-supplicant starts automatically after startup, tee-supplicant and libteec.so do not need to push again.
These two files already exist in the system; libteec.so and tee-supplicant should distinguish OP-TEE V1
from OP-TEE V2，Distinguish between 32-bit and 64-bit；

After push, check whether the tee-supplicant and CA programs have execution permissions.）

3. Other steps are the same as Android platform. See the "Android" chapter above.

#For OP-TEE V1 platform

cd external/security/rk_tee_user/v1

#For OP-TEE V2 platform

cd external/security/rk_tee_user/v2

rm -rf out/

./build.sh 3232 （For 32-bit platform，CA 32bits，TA 32bits）

./build.sh 6432 （For 64-bit platform，CA 64bits，TA 32bits）

cd external/security/rk_tee_user/

rm -rf out/

./build.sh 3232 （For 32-bit platform，CA 32bits，TA 32bits）

./build.sh 6432 （For 64-bit platform，CA 64bits，TA 32bits）

af://n2217
af://n2228

4.4.4 Step By Step

Here is an example of the arm64 platform using OP-TEE V2 on Linux

4.4.5 Develop CA/TA

Refer to Makefile about CA TA, the UUID of the header file needs to be modified to a new UUID，It can be
generated with the uuidgen command.

head and stack size defined in user_ta_header_defines.h under include directory，head szie is 32KB
（TA_DATA_SIZE），stack size is 2KB（TA_STACK_SIZE）. Generally, it is better not to modify it. If it
cannot meet the needs, it can be appropriately enlarged，The heap size should not exceed 1MB, and the stack
size should not exceed 64KB.

//Compile CA TA

cd /home1/xxxx/rk_px30_linux/external/security/rk_tee_user/v2

rm -rf out/

./build.sh 6432

//Create optee_armtz directory, it is used to store TA files

mkdir -p /lib/optee_armtz

//Push TEE library files and CA TA to devices

adb push Y:\rk_px30_linux\external\security\bin\optee_v2\lib\arm64\libteec.so

/lib64

adb push Y:\rk_px30_linux\external\security\bin\optee_v2\lib\arm64\libteec.so.1

/lib64

adb push Y:\rk_px30_linux\external\security\bin\optee_v2\lib\arm64\tee-supplicant

/usr/bin

adb push Y:\rk_px30_linux\external\security\rk_tee_user\v2\out\rk_test\rktest

/usr/bin

adb push

Y:\rk_px30_linux\external\security\rk_tee_user\v2\out\ta\rk_test\1db57234-dacd-

462d-9bb1-ae79de44e2a5.ta /lib/optee_armtz

//Add executable permissions

chmod +x /usr/bin/tee-supplicant

chmod +x /usr/bin/rktest

//Run CA TA

tee-supplicant & //this step can be ignored if tee-supplicant is already

running

rktest transfer_data

#define TA_STACK_SIZE (2 * 1024)

#define TA_DATA_SIZE (32 * 1024)

af://n2238
af://n2241

Component Android directory Linux directory

librk_tee_service.so
hardware/rockchip/optee/v2/arm

hardware/rockchip/optee/v2/arm64

external/security/bin/optee_v2/lib/arm

external/security/bin/optee_v2/lib/arm64

rk_tee_service.h hardware/rockchip/optee/v2/include external/security/bin/optee_v2/include

4367fd45-4469-42a6-925d-
3857b952704a.ta

hardware/rockchip/optee/v2/ta external/security/bin/optee_v2/ta

4.5 rk_tee_service

4.5.1 Introduction

rk_tee_service is a security service developed based on TEE，which provides common security functions for
developers. The simple and clear external interface greatly facilitates developers' use. rk_tee_service is
essentially a CA TA application，Therefore, test the TEE environment is normal before using rk_tee_service.

Developers can directly call rk_ tee_service to encrypts and decrypts sensitive data. The encryption/decryption
key is derived by TEE using the unique key HUK inside the device hardware，Therefore, the encryption and
decryption keys of each device are different，Copying the sensitive data of device A to device B cannot be
decrypted normally to ensure that the sensitive data will not be stolen. Due to the size of shared memory, it is
recommended that the size of data encrypted and decrypted at a single time should not exceed 1M. It is
recommended to encrypt and decrypt big data in multiple times.

At present, the OP-TEE V2 platform supports this function, while the OP-TEE V1 platform does not.

4.5.2 Component

Currently, it supports Linux platform and Android platform (Android 12 and higher).

The Userspace application can directly call librk_tee_service.so，Parameter of function please refer to
rk_tee_service.h，Push 4367fd45-4469-42a6-925d-3857b952704a.ta into /lib/optee_armtz for Linux platform ，
Push 4367fd45-4469-42a6-925d-3857b952704a.ta into /vendor/lib/optee_armtz for Android platform.

4.5.3 Demo

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "rk_tee_service.h"

int main(int argc, char *argv[])

{

 unsigned char plain[256];

 unsigned int plain_len;

 unsigned char cipher[256];

 unsigned int cipher_len;

 int res;

 memset((void *)plain, 0xab, sizeof(plain));

 cipher_len = 256;

af://n2245
af://n2246
af://n2250
af://n2270

5. TA Signature

5.1 Principle

When compiling TA, the compile script will automatically use the key in the export-user_ta/keys directory
or export-ta_arm32/keys directory of the rk_tee_user project to sign TA application. The key is 2048 bits
RSA key in pem format. Finally, the TA file in .ta format is generated.

There is an RSA public key stored in the TEE binary. When the TA is loaded and run, the TEE OS will use the
public key to verify the validity of the TA. Only after the verification is passed, the TA application can run
normally.

5.2 Replace the public key

To prevent developer A's TA application from running on developer B's board, it is recommended to replace the
public key.

Developers can replace public keys in TEE binary with tools in the rk_tee_user project tools/ directory.

Linux：

This command automatically generates a 2048 bits RSA key oemkey.pem in the current directory, and
replaces the original public key in the TEE binary with the public key in this key.

Replace the original public key in the TEE binary with the public key specified by the developer. The key
length must be 2048 bits.

Windows：

Open Windows_change_puk.exe and click "Generate oemkey.pem" to generate and save keys.

Select the key and TEE binary you just generated, and click "Modify Public Key".

(Since Windows_change_puk.exe invokes the BouncyCastle.Crypto.dll third-party library, make sure
BouncyCastle.Crypto.dll is in the same directory as Windows_change_puk.exe)

 res = rk_encrypt_data(plain, sizeof(plain), cipher, &cipher_len);

 printf("res=0x%x cipher_len=%d\n", res, cipher_len);

 memset((void *)plain, 0, sizeof(plain));

 plain_len = 256;

 res = rk_decrypt_data(cipher, cipher_len, plain, &plain_len);

 printf("res=0x%x plain_len=%d\n", res, plain_len);

 return 0;

}

./change_puk --teebin <TEE binary>

./change_puk --teebin <TEE binary> --key oemkey.pem

af://n2273
af://n2274
af://n2277

After the public key is replaced, the developer needs to use the new TEE binary to replace the original TEE
binary in the rkbin/ directory, recompile the U-Boot, and burn the new trust.img firmware. Part of the
platforms have no trust.img because trust.img is packaged into uboot.img , so uboot.img is burned
instead.

The developer needs to rename the key generated or specified by the previous tool to oem_privkey.pem and
replace the key in the export-user_ta/keys or export-ta_arm32/keys directory of the rk_tee_user
project. Recompile the CA and TA so that the resulting TA application can be properly loaded and run by the
TEE binary (new public key). Any TA that is not signed with the correct private key is considered invalid and
cannot be run.

6. Built-in TA into secure storage

In normal cases, TA files are stored in plaintext in an non-secure file system after TA development. Some OEM
that have high security requirements do not want TA files to be exposed in plaintext. To meet the OEM'
requirements, OP-TEE V2 supports built-in TA files to secure storage (OP-TEE V1 does not support this).

6.1 Principle

The CA side reads TA files in the non-secure file system and sends TA data to the OP-TEE OS. After receiving
TA data, the OP-TEE OS verifies the validity of TA. If TA is legal, it randomly generates TA encryption key and
encrypts TA data with TA encryption key. Then the ciphertext TA data and TA encryption key are securely stored.
The key used for secure storage is derived from the unique key of the hardware, which is different for each
device. Finally, the developer needs to delete TA files in the non-secure file system to prevent the plaintext TA
from being exposed.

After the appeal step is complete, the CA can call the TA application normally. When the CA calls the TA in the
secure storage, the OP-TEE OS searches for the TA in the secure storage according to the incoming uuid. If the
TA is found, the OP-TEE OS decrypts and loads the TA; if the TA is not found in secure storage, the TA will be
searched in the non-secure file system.

6.2 Reference implementation

Here is the CA-side code that lets you read the TA file and send the TA data to the OP-TEE OS using the
install_ta function.

static void install_ta(void *buf, size_t blen)

{

 TEEC_Result res = TEEC_ERROR_GENERIC;

 uint32_t err_origin = 0;

 TEEC_UUID uuid = PTA_SECSTOR_TA_MGMT_UUID;

 TEEC_Operation op;

 TEEC_Context ctx = { };

 TEEC_Session sess = { };

 int i = 0;

 res = TEEC_InitializeContext(NULL, &ctx);

 if (res != TEEC_SUCCESS) {

af://n2294
af://n2296
af://n2299

7. Encrypt TA

Section in the previous chapter Built-in TA to secure storage introduce one way to avoid exposing clear TA file,
but the built-in TA will take up secure storage space, and TA's secret key is randomly generated, not the
developers own encryption key, this chapter introduces another kind of encryption method of TA (OP - TEE V2
support, OP-TEE V1 is not currently supported).

7.1 Method of encrypting TA

The developer needs to enable the CFG_ENCRYPT_TA macro in export-ta_arm32/mk/link.mk and change
TA_ENC_KEY to developer's own encryption key. After this macro is enabled, the script will automatically sign
and encrypt TA when the developer compiles TA application.

 printf("TEEC_InitializeContext failed with code 0x%x\n", res);

 goto exit;

 }

 res = TEEC_OpenSession(&ctx, &sess, &uuid,

 TEEC_LOGIN_PUBLIC, NULL, NULL, &err_origin);

 if (res != TEEC_SUCCESS) {

 printf("TEEC_Opensession failed with code 0x%x origin 0x%x\n",

 res, err_origin);

 goto exit;

 }

 memset(&op, 0, sizeof(op));

 op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_TEMP_INPUT, TEEC_NONE,

 TEEC_NONE, TEEC_NONE);

 op.params[0].tmpref.buffer = buf;

 op.params[0].tmpref.size = blen;

 res = TEEC_InvokeCommand(&sess, PTA_SECSTOR_TA_MGMT_BOOTSTRAP, &op,

 &err_origin);

 if (res != TEEC_SUCCESS) {

 printf("TEEC_InvokeCommand failed with code 0x%x origin 0x%x\n",

 res, err_origin);

 goto exit;

 }

 printf("Installing TAs done\n");

exit:

 TEEC_CloseSession(&sess);

 TEEC_FinalizeContext(&ctx);

 return;

}

af://n2302
http://built-in%20ta%20to%20secure%20storage/
af://n2304

7.2 Burn TA encryption key

The developer uses the RKDevInfoWriteTool tool (version no less than 1.2.8) in the RKTools directory of the
SDK project to write TA encryption key.

Before use, the developer needs to create a new key file, open the file in hexadecimal format, edit the developer's
32-byte encryption key in the file, open the RKDevInfoWriteTool tool, select "TA encryption key", and click the
button to select the key file created by the developer. After the device enters the LOADER mode, click the
"Write" ("写入") button to write the key. The key will be written to the device OTP (the OTP area cannot be
changed once written, so the key can only be written once on device).

To prevent TA encryption key disclosure, the tool does not support reading TA encryption key.

7.3 Decrypt and run the TA

The use of encrypted TA and plaintext TA is exactly the same. OP-TEE OS will automatically recognize that TA
is encrypted when loading TA, and OP-TEE OS will automatically read TA encryption key in OTP and decrypt
and run TA. This process is automatically completed by OP-TEE OS.

8. REE FS TA anti-rollback

As shown in Built-in TA to secure storage , OP-TEE V2 supports storing TA in both REE FS and Secure storage
in plain text. OP-TEE V2 supports TA rollback prevention if TA is stored in plain text in REE FS, preventing TA
version rollback in an REE non-secure environment.

af://n2306
af://n2311
af://n2313
http://built-in%20ta%20to%20secure%20storage/

8.1 TA anti-rollback usage

The TA anti-rollback function of REE FS is always enabled. Developers can use the anti-rollback function by
defining the TA version number in the Makefile.

If CFG_TA_VERSION is never defined in TA's Makefile, the system recognizes TA's version number as 0 and
allows TA with the same version number to run.

If the Makefile of TA defines that the current CFG_TA_VERSION is greater than 0, as shown in the following
example, the rollback of TA version is prevented.

9. TA debugging methods

9.1 OP-TEE v1 platforms

When TA encounters a serious error condition, it prints diagnostic information as follows.

The pc or elr in the error condition is the virtual address that caused the exception. The load addr is the
virtual address of the TA running in memory. We can konw the offset of the exception code in the TA is, elr - load
addr = 0x402000a0 - 0x40200000 = 0xa0.

In the compiled directory, there is a file named by uuid.dmp in the same directory as the TA. The uuid.dmp
is a disassembly file of the TA, which identifies the offset address of each function in the TA. Search for a0 in
the uuid.dmp , as follows, where testapp_ta.c:97 indicates that the exception code is on line 97 of
testapp_ta.c .

unsigned integer format

CFG_TA_VERSION=1

user TA data-abort at address 0x2a

 esr 0x92000021 ttbr0 0x400000852fc00 ttbr1 0x00000000 cidr 0x0

 cpu #4 cpsr 0x20000130

#For 32-bit platforms, print r0-r12, sp, lr, pc(402000a0)

#For 64-bit platforms, print x0-x30, sp_el0, elr(00000000402000a0)

Status of TA 8cccf200-2450-11e4-abe20002a5d5c52c (0x85109b0) (active)

- load addr : 0x40200000 ctx-idr: 4

- code area : 0x9200000 2097152

- stack: 0x9400000 stack:2048

TEEC_InvokeCommand failed with code 0xffff3024 origin 0x3

/home/xxx/android/vendor/optee_test/ta/testapp/testapp_ta.c:97

 98: 6823 ldr r3, [r4, #0]

 9a: 2202 movs r2, #2

 9c: 2161 movs r1, #97 ; 0x61

 9e: 4820 ldr r0, [pc, #128] ; (120

<TA_InvokeCommandEntryPoint+0xa0>)

af://n2315
af://n2320
af://n2321

9.2 OP-TEE v2 platforms

When TA encounters a serious error condition, it prints diagnostic information as follows.

The pc or elr in the error condition is the virtual address that caused the exception. The region 0 -

region 8 are the virtual address of the TA code running in memory. The exception code address 0xc00870a4
is in region 7 . We can calculate the offset of the exception code as following, elr - region 7 : va =
0xc00870a4 - 0xc0087000 = 0xa4.

In the compiled directory, there is a file named by uuid.dmp in the same directory as the TA. The uuid.dmp is a
disassembly file of the TA, which identifies the offset address of each function in the TA. Search for a4 in the
uuid.dmp , as follows, where testapp_ta.c:101 indicates that the exception code is on line 101 of
testapp_ta.c .

 a0: 681b ldr r3, [r3, #0]

 a2: 4478 add r0, pc

 a4: 3033 adds r0, #51 ; 0x33

 a6: 9301 str r3, [sp, #4]

 a8: 4b1e ldr r3, [pc, #120] ; (124

<TA_InvokeCommandEntryPoint+0xa4>)

 aa: 447b add r3, pc

 ac: 9300 str r3, [sp, #0]

 ae: 2301 movs r3, #1

 b0: f002 fbc0 bl 2834 <trace_printf>

E/TC:? 0 User mode data-abort at address 0x2a (translation fault)

E/TC:? 0 esr 0x92000005 ttbr0 0x20000084a7020 ttbr1 0x00000000 cidr 0x0

E/TC:? 0 cpu #1 cpsr 0x20000130

#For 32-bit platforms, print r0-r12, sp, lr, pc(c00870a4)

#For 64-bit platforms, print x0-x30, sp_el0, elr(00000000c00870a4)

E/LD: region 0: va 0xc0004000 pa 0x08600000 size 0x002000 flags rw-s (ldelf)

E/LD: region 1: va 0xc0006000 pa 0x08602000 size 0x008000 flags r-xs (ldelf)

E/LD: region 2: va 0xc000e000 pa 0x0860a000 size 0x001000 flags rw-s (ldelf)

E/LD: region 3: va 0xc000f000 pa 0x0860b000 size 0x004000 flags rw-s (ldelf)

E/LD: region 4: va 0xc0013000 pa 0x0860f000 size 0x001000 flags r--s

E/LD: region 5: va 0xc0014000 pa 0x08625000 size 0x001000 flags rw-s (stack)

E/LD: region 6: va 0xc0015000 pa 0x09201000 size 0x002000 flags rw-- (param)

E/LD: region 7: va 0xc0087000 pa 0x00001000 size 0x009000 flags r-xs [0]

E/LD: region 8: va 0xc0090000 pa 0x0000a000 size 0x00c000 flags rw-s [0]

E/LD: [0] 8cccf200-2450-11e4-abe2-0002a5d5c52c @ 0xc0087000

E/LD: Call stack:

E/LD: 0xc00870a4

E/LD: 0xc0088b21

E/LD: 0xc008d507

E/LD: 0xc008716c

/home/xxx/rk_px30_linux/external/optee_test/ta/testapp/testapp_ta.c:101

 9c: 6823 ldr r3, [r4, #0]

 9e: 2202 movs r2, #2

af://n2328

9.3 Call stack

If the exception code address is not enough for you and also need functions call stack, the script export-

ta_arm32\scripts\symbolize.py in OP-TEE v2 provides to show call stack. Note that the OP-TEE v1
platform does not support the script.

Step 1, set the compiler path you are using.

Step 2, execute the script and -d parameter points to the TA compiled directory.

Step 3, the script will wait for the exception log, after input, you can get the following result including Call
stack .

 a0: 4d28 ldr r5, [pc, #160] ; (144

<TA_InvokeCommandEntryPoint+0xc4>)

 a2: 4e29 ldr r6, [pc, #164] ; (148

<TA_InvokeCommandEntryPoint+0xc8>)

 a4: 681b ldr r3, [r3, #0]

 a6: 447d add r5, pc

 a8: 447e add r6, pc

 aa: 3533 adds r5, #51 ; 0x33

 ac: 4628 mov r0, r5

 ae: 9600 str r6, [sp, #0]

 b0: 9301 str r3, [sp, #4]

 b2: 2301 movs r3, #1

 b4: f000 f912 bl 2dc <trace_printf>

#For 32-bit platforms, execute:

export PATH=/home1/hisping/rk_px30_linux/prebuilts/gcc/linux-x86/arm/gcc-linaro-

6.3.1-2017.05-x86_64_arm-linux-gnueabihf/bin:$PATH

export CROSS_COMPILE=arm-linux-gnueabihf-

#For 64-bit platforms, execute:

export PATH=/home1/hisping/rk_px30_linux/prebuilts/gcc/linux-x86/aarch64/gcc-

linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin:$PATH

export CROSS_COMPILE=aarch64-linux-gnu-

./export-ta_arm32/scripts/symbolize.py -d out/ta/testapp/

I/TA: Hello Test App!

E/TC:? 0

E/TC:? 0 User mode data-abort at address 0x2a (translation fault)

E/TC:? 0 esr 0x92000005 ttbr0 0x20000084a7020 ttbr1 0x00000000 cidr 0x0

E/TC:? 0 cpu #1 cpsr 0x20000130

E/TC:? 0 x0 00000000000069ee x1 0000000000000062

E/TC:? 0 x2 0000000000000002 x3 000000000000002a

E/TC:? 0 x4 00000000c0014f30 x5 00000000c0014f40

E/TC:? 0 x6 00000000c0074080 x7 00000000c0074308

E/TC:? 0 x8 00000000c00742e8 x9 00000000c0014f30

E/TC:? 0 x10 0000000000000065 x11 00000000c007f2d8

E/TC:? 0 x12 0000000000000773 x13 00000000c0014f00

E/TC:? 0 x14 00000000c006cb0d x15 0000000000000000

af://n2335

platform TEE_RAM TA_RAM SHMEM

RK312x 1M 12M 1M

RK322x 1M 12M 2M

RK3288 1M 12M 2M

RK3368 2M 24M 4M

RK3328/RK322xH 2M 24M 4M

RK3399/RK3399Pro 2M 24M 4M

10. Memory description

10.1 OP-TEE V1

Note: The secure OS runs in TEE_RAM. The TA runs in TA_RAM. SHMEM is the shared memory.

E/TC:? 0 x16 0000000000000000 x17 0000000000000000

E/TC:? 0 x18 0000000000000000 x19 0000000000000000

E/TC:? 0 x20 0000000000000000 x21 0000000000000000

E/TC:? 0 x22 0000000000000000 x23 0000000000000000

E/TC:? 0 x24 0000000000000000 x25 0000000000000000

E/TC:? 0 x26 0000000000000000 x27 0000000000000000

E/TC:? 0 x28 0000000000000000 x29 0000000000000000

E/TC:? 0 x30 0000000000000000 elr 00000000c006b0a4

E/TC:? 0 sp_el0 00000000c0014f80

E/LD: Status of TA 8cccf200-2450-11e4-abe2-0002a5d5c52c

E/LD: arch: arm

E/LD: region 0: va 0xc0004000 pa 0x08600000 size 0x002000 flags rw-s (ldelf)

E/LD: region 1: va 0xc0006000 pa 0x08602000 size 0x008000 flags r-xs (ldelf)

E/LD: region 2: va 0xc000e000 pa 0x0860a000 size 0x001000 flags rw-s (ldelf)

E/LD: region 3: va 0xc000f000 pa 0x0860b000 size 0x004000 flags rw-s (ldelf)

E/LD: region 4: va 0xc0013000 pa 0x0860f000 size 0x001000 flags r--s

E/LD: region 5: va 0xc0014000 pa 0x08625000 size 0x001000 flags rw-s (stack)

E/LD: region 6: va 0xc0015000 pa 0x09201000 size 0x002000 flags rw-- (param)

E/LD: region 7: va 0xc006b000 pa 0x00001000 size 0x009000 flags r-xs [0]

.ta_head .text .rodata .ARM.extab .ARM.exidx .dynsym .dynstr .hash

E/LD: region 8: va 0xc0074000 pa 0x0000a000 size 0x00c000 flags rw-s [0]

.dynamic .got .rel.got .data .bss .rel.dyn

E/LD: [0] 8cccf200-2450-11e4-abe2-0002a5d5c52c @ 0xc006b000

(out/ta/testapp/8cccf200-2450-11e4-abe2-0002a5d5c52c.elf)

E/LD: Call stack:

E/LD: 0xc006b0a4 TA_InvokeCommandEntryPoint at ta/testapp/testapp_ta.c:98

E/LD: 0xc006cb0d entry_invoke_command at

/home/zhangzj/secure/optee_3.6.0/optee_os/lib/libutee/arch/arm/user_ta_entry.c:35

7

E/LD: 0xc00714f3 __ta_entry_c at export-ta_arm32/src/user_ta_header.c:48

E/LD: 0xc006b158 __ta_entry at export-ta_arm32/src/ta_entry_a32.S:20

af://n2344
af://n2345

platform TEE_RAM TA_RAM SHMEM

RK3326/PX30 2M 4M 2M

RK3358 2M 4M 2M

RK3308 2M 1M 1M

RK1808 2M 1M 1M

RV1109/RV1126 760K 1M 512K

RK3566/RK3568 2M 12M 2M

RK3588 2M 12M 2M

RK3528 2M 4M 2M

RK3562 2M 4M 2M

RV1106 1M 1M 512K

10.2 OP-TEE V2

Note: The secure OS runs in TEE_RAM. The TA runs in TA_RAM. SHMEM is the shared memory.

11. Secure Storage

11.1 Partition

1. Secure storage is one of the important functions of OP-TEE OS. It generally used to store private user data.
Data is encrypted by OP-TEE OS and then stored in the security partition or rpmb partition or
Android/Linux file system.

There are three types of TEE secure storage:

The first, set storageID=TEE_STORAGE_PRIVATE_RPMB in TA code, then emmc rpmb is used for
secure storage. The rpmb size varies for each emmc model, typically 4M.

The second, define security partition in parameter.txt and set storageID=TEE_STORAGE_PRIVATE_REE
in TA code, then secure storage is stored in the security partition, which is currently available at 512k.

The third, there is no security partition defined in parameter.txt and set
storageID=TEE_STORAGE_PRIVATE_REE in TA code, then secure storage is stored in the
Android/Linux file system /metadata/tee or/data/vendor/tee directory (please confirm that tee-supplicant has
permission to access this directory), and the total space is not limited. The disadvantage is that the device
needs to use emmc and uboot cannot define CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION,
The security data in the uboot stage should be stored in the EMMC rpmb by default.

2. Secure storage on the Uboot side, please refer to the "TEE Driver in U-Boot" section.

af://n2383
af://n2441
af://n2442

Storage area Data size Create an empty file Write Read Delete the file

Linux file system 30K 16ms 67ms 61ms 19ms

Linux file system 4K 17ms 23ms 13ms 7ms

Linux file system 1K 18ms 16ms 7ms 6ms

Linux file system 32 23ms 16ms 7ms 7ms

security partition 30K 97ms 181ms 54ms 277ms

security partition 4K 101ms 74ms 14ms 101ms

security partition 1K 104ms 56ms 7ms 64ms

security partition 32 103ms 55ms 7ms 73ms

rpmb partition 30K 20ms 233ms 10ms 7ms

rpmb partition 4K 20ms 36ms 3ms 6ms

rpmb partition 1K 22ms 14ms 2ms 6ms

rpmb partition 32 27ms 8ms 2ms 6ms

3. Make sure that the device does not power down when writing data for secure storage. The reason is that
although we have done power loss protection but do not ensure the integrity of file system. Therefore, it is
recommended that developers reduce the number of writes to ensure data security. In theory, RPMB
provides better power off protection than security and Android/Linux file systems.

11.2 Performance testing

Test environment: OP-TEE V1, RK3399 in Linux platform, CPU fixed frequency to 1200000, DDR fixed
frequency to 200000000.

Test environment: OP-TEE V2, RK356x in Linux platform, CPU fixed frequency to 1416000, DDR fixed
frequency to 324000000.

af://n2454

Storage area Data size Create an empty file Write Read Delete the file

Linux file system 30K 17ms 28ms 3ms 8ms

Linux file system 4K 17ms 11ms 1ms 8ms

Linux file system 1K 18ms 9ms 1ms 8ms

Linux file system 32 19ms 8ms 1ms 7ms

security partition 30K 12ms 12ms 4ms 12ms

security partition 4K 12ms 3ms 1ms 11ms

security partition 1K 13ms 2ms 1ms 11ms

security partition 32 15ms 3ms 1ms 14ms

rpmb partition 30K 23ms 287ms 16ms 5ms

rpmb partition 4K 24ms 50ms 7ms 6ms

rpmb partition 1K 23ms 22ms 5ms 6ms

rpmb partition 32 30ms 12ms 5ms 5ms

12. Solution of optional strong or weak security levels

12.1 Scope

Solution applies to: RK3588、RK3528、RK3562 and subsequent new platforms.

12.2 Notes

Before using this solution, you should be aware of the following.

Before downloading the firmware for the first time, confirm that the configuration items of uboot
CONFIG_OPTEE_SECURITY_LEVEL configured as required. It only supports configuration once and
cannot be modified later.
If you select "Strong Security Solution 2", download the OEM HUK using the tool
RKDevInfoWriteTool (V1.3.5 and above) before using.

12.3 Solution description

The solution supports the configuration of the security level of OP-TEE by the developer, and the protection
strength of eMMC/Secure Storage is different for each security levels.

af://n2641
af://n2642
af://n2644
af://n2651

Security
level

Description
CONFIG_OPTEE_SECURITY_LEVEL

(uboot's configuration item)

Strong
Security
Solution 1

CPU chip and eMMC/secure storage data
are strongly bound,

if the CPU chip is replaced, you should
replace a new eMMC chip and erase
securely stored data.

2

Strong
Security
Solution 2

CPU chip and eMMC/secure storage data
are weakly bound,

the OEM HUK which derives for
protecting eMMC/secure storage is defined
by developer,

if you download the same OEM HUK after
replacing the CPU chip, then you can use
the original eMMC/secure storage data.

1

Weak
Security
Solution

CPU chip and eMMC/secure storage data
are not bound,

you can use the original eMMC/secure
storage data after replacing the CPU chip.

0 or none

The difference between the above security levels is due to the difference between eMMC and Secure Storage
related keys. The keys related to this solution are described below.

HUK: for deriving RPMB Key, Secure Storage Key and other keys. Different HUK for different security
levels. See figures below for details.

Hard HUK is derived from the Device Root Key. Unique key in chips. Device Root Key was burned into
secure OTP when chip is manufactured.

OEM HUK is defined by developer and burned into secure OTP by developer.

Soft HUK is defined by Rockchip and all chips have the same soft HUK. It is stored in firmware.
RPMB Key: the storage protection key of the eMMC chip.
Secure Storage Key: the key for secure storage.
Other Key: other keys used in OP-TEE.

Strong Security Solution 1

 /------> RPMB Key

Device Root Key ---> Hard HUK ------> Secure Storage Key

 \------> Other Key

Strong Security Solution 2

Device Root Key ---> Hard HUK ------> Other Key

 /------> RPMB Key

OEM HUK --------------

 \------> Secure Storage Key

Weak Security Solution

Device Root Key ---> Hard HUK ------> Other Key

OTP
type

Description supported platforms

OEM
Cipher

Key

This OEM Zone area is used to store user keys. Once the key
is written, it cannot be changed. After the user burns the key,
they can use the specified key for encryption and decryption

operations.

rv1126, rv1109, rk3566,
rk3568, rk3588, rk3528,

rk3562, rv1106

Protected
OEM
Zone

This OEM Zone area is only available for Trust Application
(TA application) calls running on OP-TEE OS, and cannot be
directly read or written to in non secure world. Please refer to

rktest demo.

rk3308, rk3326, rk3358,
rk3566, rk3568, rk3588,
rv1126, rv1109, rk3528,

rk3562, rv1106

Non-
Protected

OEM
Zone

This OEM Zone area can be called by U-Boot and
UserSpace, and the data will be exposed in non secure world

memory.

rk3308, rk3326, rk3358,
rk3566, rk3568, rk3588,
rv1106, rk3528, rk3562

13. OTP description

OTP is One Time Programmable Memory. The OTP region supports multiple reads but only written once.

Multiple different OEM Zone areas are reserved in Secure OTP to meet users' different usage needs.

For more details, please refer to the document 《Rockchip_Developer_Guide_OTP_EN.pdf》

14. TA API description

14.1 Overview

RK provides the following TA APIs for two purposes:

For developers to refer to how to use the GlobalPlatform TEE Internal Core APIs
For developers to use the APIs directly

14.2 API return value

The return value of APIs are:

TEE_SUCCESS: if the function executes successfully
TEE_ERROR_BAD_PARAMETERS: if the parameter is wrong

 /------> RPMB Key

Soft HUK --------------

 \------> Secure Storage Key

af://n2682
af://n2703
af://n2704
af://n2711

Others: see tee_api_defines.h

14.3 API description

14.3.1 Crypto API

14.3.1.1 rk_crypto_malloc_ctx

Description

Request a crypto operation handle resource.

Parameters

None.

14.3.1.2 rk_crypto_free_ctx

Description

Release the crypto operation handle. It should be executed to release resources after algorithm is done.

Parameters

ctx: crypto context

14.3.1.3 rk_hash_crypto

Description

The hash digest algorithm. If you need to input message multiple times, you can use the
rk_hash_begin/update/finish interface.

Parameters

in: input data
in_len: the length of input
out: output data
out_len: the length of output
algo: algorithm type, supports TEE_ALG_MD5, TEE_ALG_SHA1, TEE_ALG_SHA224,
TEE_ALG_SHA256, TEE_ALG_SHA384, TEE_ALG_SHA512

crypto_ctx_t *rk_crypto_malloc_ctx(void);

void rk_crypto_free_ctx(crypto_ctx_t **ctx);

TEE_Result rk_hash_crypto(uint8_t *in, uint8_t *out, uint32_t in_len,

 uint32_t out_len, uint32_t algo);

af://n2720
af://n2721
af://n2722
af://n2730
af://n2738

14.3.1.4 rk_hash_begin

Description

The hash digest algorithm for multiple, initialization operation.

Parameters

ctx: crypto context
algo: algorithm type, supports TEE_ALG_MD5, TEE_ALG_SHA1, TEE_ALG_SHA224,
TEE_ALG_SHA256, TEE_ALG_SHA384, TEE_ALG_SHA512

14.3.1.5 rk_hash_update

Description

The hash digest algorithm for multiple, calculates digest of the data inputed.

Parameters

ctx: crypto context
in: input data
in_len: the length of input

14.3.1.6 rk_hash_finish

Description

The hash digest algorithm for multiple, calculates the digest of the last part and output the digest.

Parameters

ctx: crypto context
in: input data
in_len: the length of input
out: output data
out_len: the length of output

14.3.1.7 rk_cipher_crypto

Description

TEE_Result rk_hash_begin(crypto_ctx_t *ctx, uint32_t algo);

TEE_Result rk_hash_update(crypto_ctx_t *ctx, uint8_t *in, uint32_t in_len);

TEE_Result rk_hash_finish(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint32_t in_len, uint32_t *out_len);

TEE_Result rk_cipher_crypto(uint8_t *in, uint8_t *out, uint32_t len,

 uint8_t *key, uint32_t key_len, uint8_t *iv,

 uint32_t algo, TEE_OperationMode mode);

af://n2754
af://n2764
af://n2776
af://n2792

Symmetric encryption/decryption algorithm interface. If you need to input data multiple times, you can use the
rk_cipher_begin/update/finish interface.

Parameters

in: input data

len: the length of input

out: output data

key: the key used for cipher

key_len: the length of key, different algo may supports different key lengths

iv: initialization vector

algo: algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm)

mode: the mode of cipher

14.3.1.8 rk_set_padding

Description

Sets the padding mode for encrypted/decrypted data.

Parameters

ctx: crypto context
padding: see rk_padding_t for supported modes

14.3.1.9 rk_cipher_begin

Description

The initialization operation of the symmetric encryption/decryption algorithm for multiple.

Parameters

TEE_ALG_AES_ECB_NOPAD

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

TEE_ALG_AES_CTS

TEE_ALG_AES_XTS

TEE_ALG_SM4_ECB_NOPAD

TEE_ALG_SM4_CBC_NOPAD

TEE_ALG_SM4_CTR

TEE_ALG_DES_ECB_NOPAD

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD

TEE_ALG_DES3_CBC_NOPAD

TEE_Result rk_set_padding(crypto_ctx_t *ctx, int padding);

TEE_Result rk_cipher_begin(crypto_ctx_t *ctx, uint8_t *key, uint32_t key_len,

 uint8_t *iv, uint32_t algo, TEE_OperationMode mode);

af://n2815
af://n2825

ctx: crypto context

key: the key used for cipher

key_len: the length of key, different algo may supports different key lengths

iv: initialization vector

algo: algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm)

mode: the mode of cipher

14.3.1.10 rk_cipher_update

Description

Encrypt/decrypt the input data of symmetric encryption/decryption algorithm for multiple.

Parameters

ctx: crypto context
in: input data
in_len: the length of input
out: output data
out_len: the length of output

14.3.1.11 rk_cipher_finish

Description

Finish the encryption/decryption operation of symmetric encryption/decryption algorithm for multiple.

Parameters

ctx: crypto context
out: output data
out_len: the length of output

TEE_ALG_AES_ECB_NOPAD

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

TEE_ALG_AES_CTS

TEE_ALG_AES_XTS

TEE_ALG_SM4_ECB_NOPAD

TEE_ALG_SM4_CBC_NOPAD

TEE_ALG_SM4_CTR

TEE_ALG_DES_ECB_NOPAD

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD

TEE_ALG_DES3_CBC_NOPAD

TEE_Result rk_cipher_update(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint32_t in_len, uint32_t *out_len);

TEE_Result rk_cipher_finish(crypto_ctx_t *ctx, uint8_t *out, uint32_t *out_len);

af://n2844
af://n2860

14.3.1.12 rk_ae_begin

Description

Initialization operations of AES-CCM or AES-GCM algorithms.

Parameters

ctx: crypto context
key: the key for calculation
key_len: the length of key, supports 16，24，32
iv: initialization vector
iv_len: the length of iv
add_len: the ADD length of the AES-CCM
tag_len: the tag length(bit), AES-GCM supports 128, 120, 112, 104, 96, and AES-CCM supports 128, 112,
96, 80, 64, 48, 32
payload_len: the payload length of the AES-CCM
algo: algorithm type, support TEE_ALG_AES_GCM, TEE_ALG_AES_CCM
mode: encryption or decryption mode

14.3.1.13 rk_ae_update

Description

Encrypts/decrypts the input data for AES-CCM or AES-GCM algorithms.

Parameters

ctx: crypto context
in: input data
in_len: the length of input
out: output data
out_len: the length of output
is_add: identifies whether there is AAD(Additional Authentication Data)

14.3.1.14 rk_ae_finish

Description

TEE_Result rk_ae_begin(crypto_ctx_t *ctx, uint8_t *key, uint32_t key_len,

 uint8_t *iv, uint32_t iv_len,

 uint32_t add_len, uint32_t tag_len,

 uint32_t payload_len, uint32_t algo, TEE_OperationMode

mode);

TEE_Result rk_ae_update(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint32_t in_len, uint32_t *out_len,

 rk_ae_update_type_t is_aad);

TEE_Result rk_ae_finish(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint8_t *tag, uint32_t in_len,

 uint32_t *out_len, uint32_t *tag_len);

af://n2872
af://n2898
af://n2916

Complete the encryption/decryption operation for AES-CCM or AES-GCM algorithms.

Parameters

ctx: crypto context
in: the last input data
in_len: the length of the last input data
out: output data
out_len: the length of output
tag: output tag
tag_len: the length of tag

14.3.1.15 rk_gen_rsa_key

Description

Randomly generate RSA key pairs.

Parameters

rsa_key: the output RSA key pairs
key_len: the length of RSA keys (byte), supports 32, 64, 96, 128, 192, 256, 384, 512
public_exponent: public exponent, supports 3, 65537

14.3.1.16 rk_rsa_crypto

Description

RSA encryption/decryption algorithms. You can also use the rk_rsa_begin/finish interface.

Parameters

in: input data

len: the length of input

out: output data

key: the RSA key

algo: the padding mode of RSA, supports:

TEE_Result rk_gen_rsa_key(rsa_key_t *rsa_key, uint32_t key_len,

 uint64_t public_exponent);

TEE_Result rk_rsa_crypto(uint8_t *in, uint8_t *out, uint32_t len,

 rsa_key_t *key, uint32_t algo, TEE_OperationMode mode);

TEE_ALG_RSAES_PKCS1_V1_5

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

TEE_ALG_RSA_NOPAD

af://n2936
af://n2948

mode: the mode of RSA, supports TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT

14.3.1.17 rk_rsa_sign

Description

RSA sign/verify algorithm. You can also use the rk_rsa_begin/finish interface.

Parameters

digest: digest value
signature: the output value of sign, or the input value to be verified
digest_len: the length of digest
signature_len: the length of signature
key: RSA key
salt_len: the length of salt, it is optional, if it is 0 then the salt length is equal to the digest length
algo: algorithm, see GPD_TEE_Internal_Core_API_Specification，Table 6-4 for details
mode: the mode of RSA, supports TEE_MODE_SIGN and TEE_MODE_VERIFY

14.3.1.18 rk_set_sign_mode

Description

Set the RSA sign mode, sign data or sign digest.

Parameters

ctx: crypto context
mode: SIGN_DATA for signing data and SIGN_DIGEST for signing digest

14.3.1.19 rk_rsa_begin

Description

Initialization of RSA encryption/decryption/sign/verify.

Parameters

ctx: crypto context
key: RSA key
algo: the padding mode of RSA, see GPD_TEE_Internal_Core_API_Specification，Table 6-4 for
details

TEE_Result rk_rsa_sign(uint8_t *digest, uint8_t *signature, uint32_t digest_len,

 uint32_t *signature_len, rsa_key_t *key,

 uint32_t salt_len, uint32_t algo, TEE_OperationMode mode);

TEE_Result rk_set_sign_mode(crypto_ctx_t *ctx, unsigned int mode);

TEE_Result rk_rsa_begin(crypto_ctx_t *ctx, rsa_key_t *key,

 uint32_t algo, TEE_OperationMode mode);

af://n2967
af://n2989
af://n2999

mode: algorithm type, support TEE_MODE_ENCRYPT, TEE_MODE_DECRYPT, TEE_MODE_SIGN,
TEE_MODE_VERIFY

14.3.1.20 rk_rsa_finish

Description

RSA algorithm executed after rk_rsa_begin .

Parameters

ctx: crypto context
in: input data
in_len: the length of input
out: output data
out_len: the length of output
salt_len: the length of salt, it is optional

14.3.1.21 rk_gen_ec_key

Description

Randomly generate ECC key pairs.

Parameters

ec_key: the output ECC key pairs
key_len: the length of key (bit), supports 192, 224, 256, 384, 521
curve: ECC curve, see tee_api_defines.h for details

14.3.1.22 rk_ecdh_genkey

Description

Perform ECDH to negotiate symmetric key.

Parameters

private: ECC private key
publicx: X-coordinate of ECC public key
publicy: Y-coordinate of ECC public key
algo: algorithm, supports TEE_ALG_ECDH_P192, TEE_ALG_ECDH_P224, TEE_ALG_ECDH_P256,
TEE_ALG_ECDH_P384, TEE_ALG_ECDH_P521

TEE_Result rk_rsa_finish(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint32_t in_len, uint32_t *out_len, uint32_t salt_len);

TEE_Result rk_gen_ec_key(ec_key_t *ec_key, uint32_t key_len, uint32_t curve);

TEE_Result rk_ecdh_genkey(uint8_t *private, uint8_t *publicx, uint32_t *publicy,

 uint32_t algo, uint32_t curve,

 uint32_t keysize, uint8_t *out);

af://n3013
af://n3031
af://n3043

curve: ECC curve, supports TEE_ECC_CURVE_NIST_P192, TEE_ECC_CURVE_NIST_P224,
TEE_ECC_CURVE_NIST_P256, TEE_ECC_CURVE_NIST_P384, TEE_ECC_CURVE_NIST_P521

keysize: the length of key (bit), supports 192, 224, 256, 384, 521
out: output symmetric key

14.3.1.23 rk_ecdsa_sign

Description

ECDSA sign/verify algorithm. You can also use the rk_ecdsa_begin/finish interface.

Parameters

digest: input digest
signature: output signature, or input signature for verified
digest_len: the length of digest
signature_len: the length of signature
key: ECC key
algo: algorithm, supports TEE_ALG_ECDSA_P224, TEE_ALG_ECDSA_P256, TEE_ALG_ECDSA_P384,
TEE_ALG_ECDSA_P521

mode: the mode of ECC, supports TEE_MODE_SIGN, TEE_MODE_VERIFY

14.3.1.24 rk_ecdsa_begin

Description

Initialization operations of ECDSA.

Parameters

ctx: crypto context
key: ECC key
algo: algorithm, supports TEE_ALG_ECDSA_P224, TEE_ALG_ECDSA_P256, TEE_ALG_ECDSA_P384,
TEE_ALG_ECDSA_P521

mode: mode, supports TEE_MODE_SIGN, TEE_MODE_VERIFY

14.3.1.25 rk_ecdsa_finish

Description

ECDSA signs the input digest, or verifys the input digest and signature.

TEE_Result rk_ecdsa_sign(uint8_t *digest, uint8_t *signature,

 uint32_t digest_len, uint32_t *signature_len,

 ec_key_t *key, uint32_t algo, TEE_OperationMode mode);

TEE_Result rk_ecdsa_begin(crypto_ctx_t *ctx, ec_key_t *key,

 uint32_t algo,TEE_OperationMode mode);

TEE_Result rk_ecdsa_finish(crypto_ctx_t *ctx, uint8_t *in, uint8_t *out,

 uint32_t in_len, uint32_t *out_len);

af://n3063
af://n3083
af://n3097

Parameters

ctx: crypto context
in: input digest
out: output signature, or input signature for verified
in_len: the length of input
out_len: the length of output

14.3.1.26 rk_sm2_pke

Description

SM2 encryption/decryption. OP-TEE V1 does not support this interface.

Parameters

in: input data
in_len: the length of input
out: output data
out_len: the length of output
key: SM2 key
algo: algorithm, supports TEE_ALG_SM2_PKE
mode: mode, supports TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT

14.3.1.27 rk_sm2_dsa_sm3

Description

SM2 sign/verify. OP-TEE V1 does not support this interface.

Parameters

digest: SM3 digest
digest_len: the length of SM3 digest, fixed to 32
signature: output signature, or input signature for verified
signature_len: the length of signature
key: SM2 key
algo: algorithm, supports TEE_ALG_SM2_DSA_SM3
mode: mode, supports TEE_MODE_SIGN and TEE_MODE_VERIFY

TEE_Result rk_sm2_pke(uint8_t *in, uint32_t in_len, uint8_t *out,

 uint32_t *out_len, ec_key_t *key,

 uint32_t algo, TEE_OperationMode mode);

TEE_Result rk_sm2_dsa_sm3(uint8_t *digest, uint32_t digest_len,

 uint8_t *signature, uint32_t *signature_len,

 ec_key_t *key, uint32_t algo, TEE_OperationMode mode);

af://n3113
af://n3133

14.3.1.28 rk_sm2_kep_genkey

Description

ECDH algorithm based on SM2. OP-TEE V1 does not support this interface.

Parameters

kep_parms: SM2 key infomation, contains the private key of A and the public key of B
share_key: output symmetric key
share_key_len: the length of share_key
conf_out: information for validation

14.3.1.29 rk_mac_crypto

Description

MAC calculation. You can use the rk_mac_begin/update/finish interface for multiple calculations.

Parameters

in: input data
in_len: the length of input
out: output data
out_len: the length of output
key: MAC key
key_len: the length of key
iv: initialization vector
algo: MAC algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm),
TEE_ALG_HMAC_MD5, TEE_ALG_HMAC_SHA1, TEE_ALG_HMAC_SHA256, TEE_ALG_AES_CMAC,

TEE_ALG_HMAC_SM3

14.3.1.30 rk_mac_begin

Description

Initialization operation for MAC multiple calculation.

Parameters

ctx: crypto context
key: MAC key
key_len: the length of key

TEE_Result rk_sm2_kep_genkey(rk_sm2_kep_parms *kep_parms, uint8_t *share_key,

 uint32_t share_key_len, uint8_t *conf_out);

TEE_Result rk_mac_crypto(uint8_t *in, uint8_t *out, uint32_t in_len,

 uint32_t *out_len, uint8_t *key, uint32_t key_len,

 uint8_t *iv, uint32_t algo);

TEE_Result rk_mac_begin(crypto_ctx_t *ctx, uint8_t *key, uint32_t key_len,

 uint8_t *iv, uint32_t algo);

af://n3153
af://n3167
af://n3189

iv: initialization vector
algo: MA Calgorithm type, support the following(OP-TEE V1 dose not support the SM algorithm),
TEE_ALG_HMAC_MD5, TEE_ALG_HMAC_SHA1, TEE_ALG_HMAC_SHA256, TEE_ALG_AES_CMAC,

TEE_ALG_HMAC_SM3

14.3.1.31 rk_mac_update

Description

Input data for MAC multiple calculation.

Parameters

ctx: crypto context
in: input data
in_len: the length of input

14.3.1.32 rk_mac_finish

Description

Input the last part of data and calculate the MAC or Verify the MAC.

Parameters

ctx: crypto context
in: the last part of input data
in_len: the length of in
mac: mode=RK_MAC_SIGN - output calculate MAC value; mode=RK_MAC_VERIFY - input MAC value
that is verified
mac_len: the length of mac
mode: see mac

14.3.1.33 rk_hkdf_genkey

Description

HKDF key derivation.

Parameters

ikm: input password

TEE_Result rk_mac_update(crypto_ctx_t *ctx, uint8_t *in, uint32_t in_len);

TEE_Result rk_mac_finish(crypto_ctx_t *ctx, uint8_t *in, uint8_t *mac,

 uint32_t in_len, uint32_t *mac_len, rk_mac_mode_t mode);

TEE_Result rk_hkdf_genkey(uint8_t *ikm, uint32_t ikm_len,

 uint8_t *salt, uint32_t salt_len,

 uint32_t *info, uint32_t info_len,

 uint32_t algo, uint32_t okm_len, uint8_t *okm);

af://n3205
af://n3217
af://n3235

ikm_len: the length of ikm
salt: input salt
salt_len: the length of salt
info: input info
info_len: the length of info
algo: algorithm, supports TEE_ALG_HKDF_MD5_DERIVE_KEY, TEE_ALG_HKDF_SHA1_DERIVE_KEY,
TEE_ALG_HKDF_SHA224_DERIVE_KEY, TEE_ALG_HKDF_SHA256_DERIVE_KEY,

TEE_ALG_HKDF_SHA384_DERIVE_KEY, TEE_ALG_HKDF_SHA512_DERIVE_KEY

okm_len: the length of okm
okm: output key

14.3.1.34 rk_pkcs5_pbkdf2_hmac

Description

Key derivation by specifying the salt, iteration count and the password.

Parameters

password: input password
password_len: the length of password
salt: input salt
salt_len: the length of salt
iterations: input iteration count
algo: algorithm, supports TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY
key_len: the length of key
out_key: output key

14.3.2 TRNG API

14.3.2.1 rk_get_trng

Description

Get the hardware random number.

Only supported by some platforms, if the interface is not supported, TEE_ERROR_NOT_SUPPORTED is returned.

Parameters

buffer: output random number
size: the length of buffer

TEE_Result rk_pkcs5_pbkdf2_hmac(uint8_t *password, uint32_t password_len,

 uint8_t *salt, uint32_t salt_len,

 uint32_t iterations, uint32_t algo,

 uint32_t key_len, uint8_t *out_key);

TEE_Result rk_get_trng(uint8_t *buffer, uint32_t size);

af://n3259
af://n3281
af://n3282

14.3.3 OTP API

14.3.3.1 rk_otp_size

Description

Gets the total size of the Protected OEM Zone in secure OTP.

Parameters

otp_size: return OTP size

14.3.3.2 rk_otp_read

Description

Read data from Protected OEM Zone in secure OTP.

Parameters

offset: the position offset of the OTP region to be read
data: output data
len: the length of data

14.3.3.3 rk_otp_write

Description

Write data to Protected OEM Zone in secure OTP.

Parameters

offset: the position offset of the OTP region to be write
data: input data
len: the length of data

15. Reference

ARM TrustZone:

https://developer.arm.com/ip-products/security-ip/trustzone

GlobalPlatform：

https://globalplatform.org/

TEE_Result rk_otp_size(uint32_t *otp_size);

TEE_Result rk_otp_read(uint32_t offset, uint8_t *data, uint32_t len);

TEE_Result rk_otp_write(uint32_t offset, uint8_t *data, uint32_t len);

af://n3292
af://n3293
af://n3301
af://n3313
af://n3325
https://developer.arm.com/ip-products/security-ip/trustzone
https://globalplatform.org/

This website can download CA development API reference documents： TEE Client API Specification

TA development API reference document： TEE Internal Core API Specification

And other architecture reference documents.

	Rockchip TEE SDK Developer Guide
	Reading Guide
	Introduction to TrustZone
	What is TrustZone
	Architecture
	Hardware architecture
	Software architecture
	TrustZone and TEE

	TEE Environment
	OP-TEE Version Description
	Parameter.txt
	TEE firmware
	TEE driver in U-Boot
	Macro Definition
	Shared Memory
	Secure Storage Test
	Test method
	Troubleshooting

	TEE driver in kernel
	OP-TEE V1
	OP-TEE V2
	Confirm TEE drive is enabled

	TEE Library

	CA/TA Development And Test
	Environment
	CA/TA demo
	Android
	Directory Introduction
	Compile
	Run
	Step By Step
	Develop CA/TA

	Linux
	Directory Introduction
	Compile
	Run
	Step By Step
	Develop CA/TA

	rk_tee_service
	Introduction
	Component
	Demo

	TA Signature
	Principle
	Replace the public key

	Built-in TA into secure storage
	Principle
	Reference implementation

	Encrypt TA
	Method of encrypting TA
	Burn TA encryption key
	Decrypt and run the TA

	REE FS TA anti-rollback
	TA anti-rollback usage

	TA debugging methods
	OP-TEE v1 platforms
	OP-TEE v2 platforms
	Call stack

	Memory description
	OP-TEE V1
	OP-TEE V2

	Secure Storage
	Partition
	Performance testing

	Solution of optional strong or weak security levels
	Scope
	Notes
	Solution description

	OTP description
	TA API description
	Overview
	API return value
	API description
	Crypto API
	rk_crypto_malloc_ctx
	rk_crypto_free_ctx
	rk_hash_crypto
	rk_hash_begin
	rk_hash_update
	rk_hash_finish
	rk_cipher_crypto
	rk_set_padding
	rk_cipher_begin
	rk_cipher_update
	rk_cipher_finish
	rk_ae_begin
	rk_ae_update
	rk_ae_finish
	rk_gen_rsa_key
	rk_rsa_crypto
	rk_rsa_sign
	rk_set_sign_mode
	rk_rsa_begin
	rk_rsa_finish
	rk_gen_ec_key
	rk_ecdh_genkey
	rk_ecdsa_sign
	rk_ecdsa_begin
	rk_ecdsa_finish
	rk_sm2_pke
	rk_sm2_dsa_sm3
	rk_sm2_kep_genkey
	rk_mac_crypto
	rk_mac_begin
	rk_mac_update
	rk_mac_finish
	rk_hkdf_genkey
	rk_pkcs5_pbkdf2_hmac

	TRNG API
	rk_get_trng

	OTP API
	rk_otp_size
	rk_otp_read
	rk_otp_write

	Reference

