LuckFox pico mini 模型部屬問題

  • 您好,随机数森林模型没有使用到多层矩阵运算的卷积层不需要使用到rknn,直接安装依赖的python库在cpu上运行即可,建议在ubuntu系统下进行,glibc对python库的兼容性更好
  • 我執行時會一直遇到以下問題,我已經把訓練環境的numpy、scikit-learn、pandas變得跟luckfox一致了
    pico@luckfox:~$ sudo python3 Nir_Fatigue_Predict.py
    [sudo] password for pico:
    Traceback (most recent call last):
    File "/home/pico/Nir_Fatigue_Predict.py", line 14, in <module>
    model = joblib.load("/home/pico/RFFM_3.joblib")
    File "/usr/local/lib/python3.10/dist-packages/joblib/numpy_pickle.py", line 658, in load
    obj = _unpickle(fobj, filename, mmap_mode)
    File "/usr/local/lib/python3.10/dist-packages/joblib/numpy_pickle.py", line 577, in _unpickle
    obj = unpickler.load()
    File "/usr/lib/python3.10/pickle.py", line 1213, in load
    dispatch[key[0]](self)
    File "/usr/lib/python3.10/pickle.py", line 1590, in load_reduce
    stack[-1] = func(*args)
    File "sklearn/tree/_tree.pyx", line 607, in sklearn.tree._tree.Tree.__cinit__
    ValueError: Buffer dtype mismatch, expected 'SIZE_t' but got 'long long'
  • 第三方软件适配遇到的问题我们不了解实际运行环境和软件源码无法提供相关帮助,根据提示信息应该是python库源码的类型不匹配,可以参考 https://blog.csdn.net/qq_38463737/artic ... /132281640 降低板端相关库的版本
  • 我已經降低版本了,後來發現好像是因為模型在電腦上訓練,但轉到luckfox上時因為luckfox pico mini是arm架構的關係,導致失敗,請問有甚麼解決方法呢?