Page 1 of 1

Cant convert custom onnx model to rknn

Posted: 2025-04-17 8:22
by quocan123
Hi, i'm try to convert my custom model to rknn for RV1106. But I got this error. How to fix it ?

Code: Select all

I rknn-toolkit2 version: 2.3.0
--> Config model
done
--> Loading model
I Loading : 100%|██████████████████████████████████████████████| 120/120 [00:00<00:00, 42897.51it/s]
done
--> Building model
I OpFusing 0: 100%|██████████████████████████████████████████████| 100/100 [00:00<00:00, 531.79it/s]
I OpFusing 1 : 100%|█████████████████████████████████████████████| 100/100 [00:00<00:00, 277.26it/s]
I OpFusing 0 : 100%|█████████████████████████████████████████████| 100/100 [00:00<00:00, 177.67it/s]
I OpFusing 1 : 100%|█████████████████████████████████████████████| 100/100 [00:00<00:00, 169.86it/s]
I OpFusing 2 : 100%|█████████████████████████████████████████████| 100/100 [00:00<00:00, 108.21it/s]
W build: found outlier value, this may affect quantization accuracy
                        const name               abs_mean    abs_std     outlier value
                        model.0.conv.weight      0.69        0.87        -11.014
I GraphPreparing : 100%|███████████████████████████████████████| 179/179 [00:00<00:00, 10823.93it/s]
I Quantizating : 100%|████████████████████████████████████████████| 179/179 [00:05<00:00, 35.22it/s]
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!
                       Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output0' is changed from 'float32' to 'int8' in rknn model for performance!
                      Please take care of this change when deploy rknn model with Runtime API!
I rknn building ...
E RKNN: [08:18:22.083] Squeezed bytes overflow!
Aborted (core dumped)


Re: Cant convert custom onnx model to rknn

Posted: 2025-04-18 1:21
by Crocodile
Hello, we do not provide technical support for the conversion and deployment of custom models, which requires a combination of model structure and quantitative reference datasets, and the source code of RKNN is not publicly available to determine the cause of the error