Custem yolov5 model yolov5n - Segmentation fault (core dumped)
Posted: 2024-07-24 9:15
Hello,
Thank you for this forum.
I am trying to make a object detector i tried to get the dataset from roboflow. Then i trained the mode >> converted using yolov5 to rknn to onnx >> then used convert.py to get yolov5n.rknn >> then compiled example and got the c code compiled then when i ran it it gave me this error
In details steps are here
Training Steps
1. Downloaded dataset
2. Train dataset
3. Followed these steps to convert the best.pt to onnx and then rknn
https://wiki.luckfox.com/Luckfox-Pico/L ... -RKNN-Test
4. Tested the folder and attached is the datn_.pt file and datn_.onnx file and yolov5.rknn
Thank you for this forum.
I am trying to make a object detector i tried to get the dataset from roboflow. Then i trained the mode >> converted using yolov5 to rknn to onnx >> then used convert.py to get yolov5n.rknn >> then compiled example and got the c code compiled then when i ran it it gave me this error
Code: Select all
[root@luckfox rknn_yolov5_demo]# ./rknn_yolov5_demo model/yolov5.rknn model/bus.jpg
load lable ./model/coco_80_labels_list.txt
model input num: 1, output num: 3
input tensors:
index=0, name=images, n_dims=4, dims=[1, 640, 640, 3], n_elems=1228800, size=1228800, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=-128, scale=0.003922
output tensors:
index=0, name=output0, n_dims=4, dims=[1, 80, 80, 36], n_elems=230400, size=230400, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=-128, scale=0.003922
index=1, name=343, n_dims=4, dims=[1, 40, 40, 36], n_elems=57600, size=57600, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=-128, scale=0.003922
index=2, name=345, n_dims=4, dims=[1, 20, 20, 36], n_elems=14400, size=14400, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=-128, scale=0.003922
input_attrs[0].size_with_stride=1228800
model is NHWC input fmt
model input height=640, width=640, channel=3
origin size=640x640 crop size=640x640
input image: 640 x 640, subsampling: 4:2:0, colorspace: YCbCr, orientation: 1
Now i will try to load model and image
scale=1.000000 dst_box=(0 0 639 639) allow_slight_change=1 _left_offset=0 _top_offset=0 padding_w=0 padding_h=0
src width=640 height=640 fmt=0x1 virAddr=0x0xa626c000 fd=11
dst width=640 height=640 fmt=0x1 virAddr=0x(nil) fd=3
src_box=(0 0 639 639)
dst_box=(0 0 639 639)
color=0x72
rga_api version 1.10.1_[0]
rknn_run
Segmentation fault (core dumped)
In details steps are here
Training Steps
1. Downloaded dataset
Code: Select all
!pip install roboflow
from roboflow import Roboflow
rf = Roboflow(api_key="fpRIiVCaZT7TFnwC1x0Y")
project = rf.workspace("data-drown").project("datn-kmi9v")
version = project.version(1)
dataset = version.download("yolov5")
Code: Select all
!python train.py --img 640 --batch 32 --epochs 10 --data /kaggle/working/yolov5/DATN-1/data.yaml --weights yolov5n.pt
https://wiki.luckfox.com/Luckfox-Pico/L ... -RKNN-Test
4. Tested the folder and attached is the datn_.pt file and datn_.onnx file and yolov5.rknn